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TOPIC V: RANDOM VARIABLES

PAUL L. BAILEY

Within this document, we will assume that all probability spaces are finite.

1. Random Variables

Definition 1. Let S be probability space. A random variable on S is a function

X : S → R.

A random variable on a probability space S induces the structure of a probability
space on the image, as follows. Let S be a probability space, X : S → R a random
variable, and I = range(X). Note that if S is finite, then so is I. For each point
x ∈ I, assign the probability fX(x) to be the probability of the preimage of x under
X.

Definition 2. Let X : S → R be a random variable. The probability density
function (pdf) of X is

fX : R → [0, 1] given by fX(x) = P (X−1(x)).

This function is also known as the probability mass function (pmf).
Let X : S → R be a random variable. The cumulative density function (cdf) of

X is
FX : R → [0, 1] given by FX(x) = P (X−1((−∞, x]).

Although the notation fX is standard, we will more frequently use the following
notation, which is also standard.

• P (X = x) = P (X−1(x))
• P (X ≤ x) = P (X−1((−∞, x])
• P (x1 ≤ X ≤ x) = P (X−1([x1, x2])

Proposition 1. (Dirty Trick Theorem)
Let X : S → R be a random variable. Then∑

x∈R
P (X = x) = 1.

Definition 3. Let X and Y be random variables on S. We say that X and Y are
independent if, for every x, y ∈ R,

P ({s ∈ X | X(s) = x and Y (s) = y}) = P (X = x) · P (Y = y).
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2. Expectation

Definition 4. Let X : S → R be a random variable. The expectation of X is a
real number

E(X) =
∑
x∈R

xP (X = x).

Proposition 2. Let S be a finite uniform probability space, and let X : S → R be
a random variable. Then

E(X) =
1

|S|
∑
s∈S

X(s).

Proof. We view the X as producing a statistical variable on the population S, with
mean µ. Let Ex = X−1(x) denote the event the X = x; then |Ex| is the number of
members of S which map to x, and we have

µ =
1

|S|
∑
s∈S

X(s)

=
1

|S|
∑
x∈R

x|Ex|

=
∑
x∈R

x
|Ex|
|S|

=
∑
x∈R

xP (X = x)

= E(x).

□

That is, the expectation of a random variable on a finite uniform probability
space is the average value of the random variable. Thus if we let µ = E(X), we
arrive at the mean of the population’s values.

Proposition 3 (Linearity of Expectation). Let X and Y be random variables, and
let a ∈ R. Then

(a) E(X + Y ) = E(X) + E(Y );
(b) E(aX) = aE(X).

Proposition 4 (Independence of Expectation). Let X and Y be independent ran-
dom variables. Then

E(XY ) = E(X)E(Y ).
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3. Variance

Definition 5. Let S be a finite probability space and let X : S → R be a random
variable on S. Let µ = E(X). The variance of X is

V (X) =
∑
x∈R

(x− µ)2P (X = x).

Proposition 5. Let S be a finite probability space and let X : S → R be a random
variable on S. Then

V (X) = E(X2)− (E(X))2.

Proof. Let µ = E(X). Then

V (X) =
∑
x∈R

(x− µ)2P (X = x)

=
∑
x∈R

x2P (X = x)− 2µ
∑
x∈R

xP (X = x) + µ2P (X = x)

=
∑
x∈R

x2P (X = x)− 2µ
∑
x∈R

xP (X = x) + µ2

=
∑
x∈R

x2P (X = x)− 2µ2 + µ2

=
∑
x∈R

x2P (X = x)− µ2

= E(X2)− (E(X))2.

□

We recall that the variance of a variable is σ2 =

∑
(x− µ)2

N
, where N is the size

of the population. If we apply this in our current context,

σ2 =

∑
s∈S(X(s)− µ)2

|S|
=

∑
x∈R

(x− µ)2P (X = x).

Thus we set µ(X) = E(X) and σ(X) =
√
V (X).

Proposition 6. Let S be a finite probability space. Let X and Y be independent
random variables on S and let a, b ∈ R. Then

V (aX + bY ) = a2V (X) + b2V (Y ).

Proof.

V (aX + bY ) = E((aX + bY )2)− E(aX + bY )2

= E(a2X2 + 2abXY + b2Y 2)− (aE(X) + bE(Y ))2

= a2E(X2) + 2abE(XY ) + b2E(Y 2))− (a2E(X))

□
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4. Seven Great Discrete Distributions

We now describe the seven great discrete distributions:

(1) Uniform Distribution
(2) Binomial Distribution
(3) Geometric Distribution
(4) Poisson Distribution
(5) Hypergeometric Distribution (Not on AP Exam)
(6) Wilcoxon Distribution (Not on AP Exam)
(7) Survey Distribution

Great Discrete Distribution 1. Uniform Distribution
Let S be a finite set of cardinality n, and form the uniform probability space

(S,P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|
|S| =

|E|
N .

Let X : S → {1, . . . , N} be a bijective function. Then X is a discrete random
variable. We say that X has a uniform distribution.

The image of X is {1, . . . , N}.
The density of X is

P (X = x) =

{
1
N if x = img(X);

0 otherwise .

The expectation of X is

E(X) =
N + 1

2
.

Proof. Thus

E(X) =
∑
x∈R

xP (X = x) definition of expectation

=

N∑
k=1

k · 1

N
definition of uniform distribution

=
1

N

N∑
k=1

k since N is constant with respect to k

=
1

N

(
N(N + 1)

2

)
sum of an arithmetic series

=
N + 1

2
.

□

Great Discrete Distribution 2. Binomial Distribution
Let S be a finite set of cardinality N , and form the uniform probability space

(S,P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|
|S| =

|E|
N .

Let R ⊂ S with |R| = r and let p = P (R) = r
N .

Define a discrete random variable Y : S → R by

Y (s) =

{
1 if s ∈ R;

0 if s /∈ R.

We say that Y is the bernoulli random variable associated to the event R.
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The density of Y is

P (Y = y) =


p if y = 1;

1− p if y = 0;

0 otherwise.

Let n be a positive integer. Let T = ×n
i=1S, the cartesian product of S with

itself n times. Then |T | = Nn. Form the uniform probability space (T,P(T ), Q),

where for F ⊂ T we have Q(F ) = |Q|
|T | =

|F |
Nn .

Define a discrete random variable X : T → R by

X(s1, . . . , sn) =

n∑
i=1

Y (si).

We say that X has a binomial distribution.
The image of X is

img(X) = {0, 1, 2, . . . , n}.
The density of X is

P (X = x) =

(
n

x

)
px(1− p)n−x.

The expectation of X is
E(X) = np.

Proof. Let q = 1− p. Note that (n− 1)− (k − 1) = n− k, so

k

(
n

k

)
= k

n!

k!(n− k)!
= n

(n− 1)!

(k − 1)!(n− k)!
= n

(
n− 1

k − 1

)
,

Thus

E(X) =
∑
x∈R

xP (X = x) definition of expectation

=

n∑
k=0

k

(
n

k

)
pkqn−k definition of binomial distribution

=

n∑
k=1

k

(
n

k

)
pkqn−k since for k = 0, k

(
n

k

)
pkqn−k = 0

=

n∑
k=1

n

(
n− 1

k − 1

)
pkqn−k since k

(
n

k

)
= n

(
n− 1

k − 1

)

= np

n∑
k=1

(
n− 1

k − 1

)
pk−1qn−k factor out np

= np

m∑
j=0

(
m

j

)
pjqm−j put m = n− 1 and j = k − 1

= np(p+ q)n Binomial Theorem

= np. since p+ q = 1

□



6

The variance of X is
V (X) = npq.

Proof. We know that V (X) = E(X2) − (E(X))2. By definition, E(X2) =∑
x∈R x2P (X = x). Let q = 1− p, so that p+ q = 1. Then

E(X2) =

n∑
k=0

k2
(
n

k

)
pkqn−k

=

n∑
k=0

kn

(
n− 1

k − 1

)
pkqn−k

= np

n∑
k=1

k

(
n− 1

k − 1

)
pk−1q(n−1)−(k−1)

= np

m∑
j=0

(j + 1)

(
m

j

)
pjqm−j where m = n− 1 and j = k − 1

= np

( m∑
j=0

j

(
m

j

)
pjqm−j +

m∑
j=0

(
m

j

)
pjqm−j

)

= np

( m∑
j=0

m

(
m− 1

j − 1

)
pjqm−j +

m∑
j=0

(
m

j

)
pjqm−j

)

= np

(
(n− 1)p

m∑
j=0

(
m− 1

j − 1

)
pj−1q(m−1)−(j−1) +

m∑
j=0

(
m

j

)
pjqm−j

)

= np

(
(n− 1)p(p+ q)m−1 + (p+ q)m)

= np((n− 1)p+ 1)

= n2p2 + np(1− p)

= npq + n2p2

Thus

V (X) = E(X2)− (E(X))2

= npq + n2p2 − (np)2

= npq.

□
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Great Discrete Distribution 3. Geometric Distribution
Let S be a finite set of cardinality N , and form the uniform probability space

(S,P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|
|S| =

|E|
N .

Let R ⊂ S with |R| = r and let p = P (R) = r
N . Let Y : S → R be the bernoulli

random variable associated to R, so that

Y (s) =

{
1 if s ∈ R;

0 if s /∈ R.

Let T be the set of all sequences in S, so that

T = {σ : N → S}.
We wish to put a probability measure on T ; however, T is an uncountable set. Let
E be the sigma algebra generated by the sets

En(τ) = {σ ∈ T | σ(i) = τ(i) for all i > n}.
Define Q(En(τ)) =

1
Nn .

Define a discrete random variable X : T → R by

X(σ) =

{
min{i ∈ N | Y (σ(i)) = 1} if this set is nonempty;

0 otherwise.

We say that X has a geometric distribution.

The range of X is
img(X) = {0, 1, 2, . . . }.

The density of X is

fX(x) =

{
p(1− p)x−1 if x ∈ {1, 2, . . . };
0 otherwise.
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The expectation of X is

E(X) =
1

p
.

Proof. We have

E(X) =
∑
x∈R

xP (X = x)

=

∞∑
k=1

kP (X = k)

=

∞∑
k=0

kp(1− p)k−1

= p

∞∑
k=0

k(1− p)k−1

= p

∞∑
k=0

(− d

dp
(1− p)k)

= −p · d

dp

∞∑
k=0

(1− p)k

= −p · d

dp

1

1− (1− p)

= −p · d

dp

1

p

= −p · −1

p2

=
1

p
.

□
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The variance of X is

V (X) =
1− p

p2
.

Proof. We have

E(X2) =
∑
x∈R

x2P (X = x)

=

∞∑
k=1

k2P (X = k)

=

∞∑
k=0

k2p(1− p)k−1

= p

∞∑
k=0

k(k + 1)(1− p)k−1 −
∞∑
k=0

kp(1− p)k−1

= p

∞∑
k=0

(
d2

dp2
(1− p)k+1)− E(X)

= p · d2

dp2

∞∑
k=1

(1− p)k − 1

p

= p · d2

dp2
(

1

1− (1− p)
− 1)− 1

p

= p · d2

dp2
(
1

p
− 1)− 1

p

= p · 2

p3
− 1

p

=
2− p

p2
.

Thus

V (X) = E(X2)− (E(X))2 =
2− p

p2
− 1

p2
=

1− p

p2
.

□
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Okay Discrete Distribution 3. Truncated Geometric Distribution
Let S, R, and Y be as above. Let T be the cartesian product of S with itself n
times. Define a discrete random variable X : T → R by

X(s1, . . . , sn) =

{
min{i ≤ n | Y (si) = 1} if this set is nonempty;

0 otherwise.

We say that X has a truncated geometric distribution.
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Great Discrete Distribution 4. Poisson Distribution
Let T be an infinite probability space and let X : T → R be a random variable
whose density function satisfying the following.

The image of X is

img(X) = {0, 1, 2, 3, . . . }.

The density of X is

fX(x) =

{
e−λ λx

x! for x ∈ img(X);

0 otherwise.

We say that X has a Poisson distribution.

The expectation of X is

E(X) = λ.

Proof. Consider that

E(X) =
∑
x∈R

xP (X = x)

=

∞∑
k=0

kP (X = k)

=

∞∑
k=1

ke−λλ
k

k!

=
λ

eλ

∞∑
k=1

λk−1

(k − 1)!

=
λ

eλ

∞∑
k=0

λk

k!

=
λ

eλ
eλ using the Taylor series for ex

= λ

□

The variance of X is

V (X) = λ.
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Proof. Consider that

E(X2) =
∑
x∈R

x2P (X = x)

=

∞∑
k=0

k2P (X = k)

=

∞∑
k=1

k2e−λλ
k

k!

=
λ

eλ

∞∑
k=1

k
λk−1

(k − 1)!

=
λ

eλ

( ∞∑
k=1

(k − 1)
λk−1

(k − 1)!
+

∞∑
k=1

λk−1

(k − 1)!

)

=
λ

eλ

(
λ

∞∑
k=2

(k − 2)
λk−2

(k − 2)!
+

∞∑
k=1

λk−1

(k − 1)!

)

=
λ

eλ

(
λ

∞∑
i=0

i
λi

i!
+

∞∑
j=0

λj

j!

)

=
λ

eλ

(
λeλ + eλ

)
= λ(λ+ 1)

= λ2 + λ.

Thus
V (X) = E(X2)− (E(X))2 = λ2 + λ− λ2 = λ.

□

The Poisson distribution is the limit of the binomial distribution in the following
sense.

Let p ∈ (0, 1) and let Xn be a random variable with binomial (n, p) distribution.
Then µ = E(n) = np, so p = µ/n. Let ρn : R → R denote the density of the nth

binomial distribution. For x = 0, 1, . . . , n, we have

ρ(x) =

(
n

x

)
px(1− p)n−x

=
n(n− 1)(n− 2) · · · (n− x+ 1)

x!

(
µ

n

)x(
1− µ

n

)n−x

=
n

n
· n− 1

n
· · · · · n− x+ 1

n
· µ

x

x!
·
(
1− µ

n

)n(
1− µ

n

)−x

Taking the limit as n → ∞ yields

ρ(x) =
µxe−µ

x!
.

It is simply traditional to use λ as opposed to µ for the Poisson distribution.
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Great Discrete Distribution 5. Hypergeometric Distribution
Let S be a finite set of cardinality N , and form the uniform probability space

(S,P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|
N .

Let R ⊂ S with |R| = r and let p = P (R) = r
N . Let Y : S → R be the bernoulli

random variable associated to R, so that

Y (s) =

{
1 if s ∈ R;

0 if s /∈ R.

The expectation of Y is

E(Y ) = p.

Let n be an integer such that 0 ≤ n ≤ N . Set

T = {A ∈ P(S) | |A| = n}.

Then |T | =
(
N
n

)
. Form the uniform probability space (T,P(T ), Q), where for F ⊂ T

we have Q(F ) = |F |
|T | =

|F |
(Nn)

.

Define a random variable X : T → R by

X(A) =
∑
a∈A

Y (a).

Then X(A) = |A ∩R|.
The image of X is

img(X) = {0, 1, . . . , n}.
The density of X is

fX(x) =


(rx)(

N−r
n−x)

(Nn)
if x ∈ img(X);

0 otherwise.

The expectation of X is

E(X) =
nr

N
= np.

Obtain this as follows. For a ∈ S, the number of sets in T containing a is
(
N−1
n−1

)
.

Thus

E(X) =
1

|T |
∑
A∈T

X(A)

=
1

|T |
∑
A∈T

∑
a∈A

Y (a)

=
1

|T |
∑
a∈R

|{A ∈ T | a ∈ A}|

=
1

|T |
∑
a∈R

(
N − 1

n− 1

)

=

(
N−1
n−1

)
r(

N
n

)
=

nr

N
.
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Great Discrete Distribution 6. Wilcoxon Distribution
Let S be a finite set of cardinality N , and form the uniform probability space

(S,P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|
N .

Let Y : S → {1, 2, . . . , N} be a bijective random variable.
The expectation of Y is

E(Y ) =
1

N

N∑
i=1

i =
1

N
· N(N + 1)

2
=

N + 1

2
.

Let n be an integer such that 0 ≤ n ≤ N . Set

T = {A ∈ P(S) | |A| = n}.
Then |T | =

(
N
n

)
. Form the uniform probability space (T,P(T ), Q), where for F ⊂ T

we have Q(F ) = |F |
(Nn)

.

Define a random variable X : T → R by

X(A) =
∑
a∈A

Y (a).

We say that X has a Wilcoxon distribution.
The image of X is

img(X) = {n(n+ 1)

2
,
n(n+ 1)

2
+ 1, . . . ,

N(N + 1)

2
− (N − n)(N − n+ 1)

2
}.

The density of X is difficult to describe.
The expectation of X is

E(X) =
n(N + 1)

2
.
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Great Discrete Distribution 7. Sample Survey Distribution
Let S be a finite set of cardinality N , and form the uniform probability space

(S,P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|
N .

Let Y : S → R be a discrete random variable.
Let n be an integer such that 0 ≤ n ≤ N . Set

T = {A ∈ P(S) | |A| = n}.
Then |T | =

(
N
n

)
. Form the uniform probability space (T,P(T ), Q), where for F ⊂ T

we have Q(F ) = |F |
(Nn)

.

Define a random variable X : T → R by

X(A) =
∑
a∈A

Y (a).

We say that X has a sample survey distribution.
The image of X is determined by the image of Y .
The density of X is difficult to describe.
The expectation of X is

E(X) = nE(Y ).

Obtain this as follows.

E(X) =
1

|T |
∑
A∈T

X(A)

=
1

|T |
∑
A∈T

∑
a∈A

Y (a)

=
1

|T |
∑
a∈S

|{A ∈ T | a ∈ A}| · Y (a)

=
1

|T |
∑
a∈S

(
N − 1

n− 1

)
Y (a)

=

(
N−1
n−1

)(
N
n

) ∑
a∈S

Y (a)

=
n

N

∑
a∈S

Y (a)

= nE(Y ).
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5. Random Vectors

Definition 6. Let (S,E, P ) be a probability space. A function X⃗ : S → Rn is

called a random vector if X⃗−1((−∞, a]n) ∈ E for every a ∈ R.

Proposition 7. Let X⃗ : S → Rn be a random variable.

(a) If B ⊂ R is an box, then X−1(B) ∈ E.

(b) If x⃗ ∈ Rn, then X⃗−1(x) ∈ E.

Remark 1. Let {A1, . . . , An} be a collection of sets and let A = ×n
i=1 be their

cartesian product. Define a function πi : A → Ai by πi(a1, . . . , an) = ai. This
function is called projection on the ith component.

Let f : B → A be a function. Define a function fi : B → Ai by fi = πi ◦
f . This function is called the ith component function of f . We see that f(b) =
(f1(b), . . . , fn(b)).

Let a⃗ = (a1, . . . , an) ∈ A. Then f−1(⃗a) = ∩n
i=1f

−1
i (ai).

Let A = A1 ×A2. Let f : B → A. Let a⃗ = (a1, a2). Then

(a) f−1(⃗a) = f−1
1 (a1) ∩ f−1

2 (a2);
(b) f−1

1 (a1) = ∪a2∈img(f2)f
−1
2 (a2).

Proposition 8. Let X⃗ : S → Rn and let Xi : S → R be the ith component function

of X⃗. Then Xi is a random variable.

Definition 7. Let X⃗ : S → Rn be a random vector.
We say that X⃗ is discrete if X⃗(S) is countable.

Definition 8. Let X⃗ : S → Rn be a discrete random vector. The joint density of

X⃗ is a function

fX⃗ : R → [0, 1] given by fX⃗(x⃗) = P (X−1(x⃗)).

Proposition 9. Dirty Trick Theorem Revisited

Let X⃗ : S → Rn be a discrete random vector. Then∑
x⃗∈img(X⃗)

fX⃗(x⃗) = 1.

Let [X = x] denote the preimage of x under the random variable X.

Proposition 10. Let X⃗ : S → Rn be a discrete random vector. Let x ∈ img(X⃗).
Then fX⃗(x) = P (∩n

i=1[Xi = xi]).

Proposition 11. Let X⃗ : S → R2 be a discrete random vector. Let X,Y : S → R
be the components of X⃗. Then

fX1
(x) =

∑
y∈img(Y )

fX⃗(x, y).
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Multinomial Distribution
Let S be a finite set of cardinality N , and form the uniform probability space

(S,P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|
|S| =

|E|
N .

Let R1, . . . , Rn be disjoint events.
Let R0 = S ∖ ∪n

i=1Ri, so that {R0, R1, . . . , Rn} form a partition of S.
Let Y0, Y1, . . . , Yn : S → R be the corresponding Bernoulli random variables.
Let pi = P (Ri).
Let n be a positive integer. Let T = ×n

i=1S, the cartesian product of S with
itself n times. Then |T | = Nn. Form the uniform probability space (T,P(T ), Q),

where for F ⊂ T we have Q(F ) = |Q|
|T | =

|F |
Nn .

Define discrete random vectors Xi : T → R by

X(s1, . . . , sn) =

n∑
i=1

Y (si).

Define a discrete random vector X⃗ : T → Rn by X⃗ = (X1, . . . , Xn).
Multivariate Hypergeometric Distribution
Let S be a finite set of cardinality N , and form the uniform probability space

(S,P(S), P ), where P : P(S) → [0, 1] is given by P (E) = |E|
N .

Let R1, . . . , Rn be disjoint events.
Let R0 = S ∖ ∪n

i=1Ri, so that {R0, R1, . . . , Rn} form a partition of S.
Let Y0, Y1, . . . , Yn : S → R be the corresponding Bernoulli random variables.
Let pi = P (Ri).
Let n be an integer such that 0 ≤ n ≤ N . Set

T = {A ∈ P(S) | |A| = n}.

Then |T | =
(
N
n

)
. Form the uniform probability space (T,P(T ), Q), where for F ⊂ T

we have Q(F ) = |F |
|T | =

|F |
(Nn)

.

Define random variables Xi : T → R by

Xi(A) =
∑
a∈A

Yi(a).

Then Xi(A) = |A ∩R|.
The image of X is

img(X) = {0, 1, . . . , n}.

The density of X is

fX(x) =


(rx)(

N−r
n−x)

(Nn)
if x ∈ img(X);

0 otherwise.

The expectation of X is

E(X) =
nr

N
= np.



18

Obtain this as follows. For a ∈ S, the number of sets in T containing a is
(
N−1
n−1

)
.

Thus

E(X) =
1

|T |
∑
A∈T

X(A)

=
1

|T |
∑
A∈T

∑
a∈A

Y (a)

=
1

|T |
∑
a∈R

|{A ∈ T | a ∈ A}|

=
1

|T |
∑
a∈R

(
N − 1

n− 1

)

=

(
N−1
n−1

)
r(

N
n

)
=

nr

N
.

Example 1. An urn contains 2 red balls, three white balls, and four blue balls.
One selects four balls at random from the urn without replacement. Let X1 denote
the number of red balls in the sample, let X2 denote the number of white balls
in the sample, and let X3 denote the number of blue balls in the sample. Let

X⃗ = (X1, X2, X3).

(a) Find the range of (X,Y, Z).
(b) Find the value of the joint density of (X,Y, Z) at each point in the range.
(c) Find the joint marginal density of (X,Y ), (X,Z), and (Y,Z).
(d) Find the three univariate marginal densities.
(e) Find the density of X + Z.
(f) Find the expectations of X, Y , Z, 2X + 3Y .

Solution. Let S be the set of balls in the urn, together with the uniform probability
structure.

The range is

{(0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)}.
□
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